The Ins and Outs of Buprenorphine

Presented By:
Jeffrey Bettinger, PharmD
Pain Management Pharmacist
Saratoga Hospital Medical Group, Saratoga Springs, NY

About Alliant Health Solutions

Tanya Vadala, Pharm.D.

MEDICATION SAFETY PHARMACIST

Tanya is an IPRO pharmacist with 20 years of clinical pharmacy, community pharmacy, academia, quality improvement and medication safety experience. Prior to joining IPRO, she worked at various community pharmacies and taught at Albany College of Pharmacy and Health Sciences in Albany, NY. She specializes in Medication Therapy Management (MTM), medication reconciliation, opioids, immunizations, and patient self-care. Her formal teaching experience includes courses in pharmacy practice and clinical experiential teaching.

Contact: <u>TVadala@ipro.org</u>

Jeffrey Bettinger, Pharm.D.

PAIN MANAGEMENT PHARMACIST

Dr. Jeffrey J. Bettinger, PharmD, is a Pain Management Clinical Pharmacist with Saratoga Hospital Medical Group in Saratoga, NY. He also served as an invited expert panel member for the FDA during their public workshop Morphine Milligram Equivalents: Current Applications and Knowledge Gaps, Research Opportunities, and Future Directions in 2021. He earned his PharmD from Albany College of Pharmacy and Health Sciences in 2017 with a concentration in nephrology. Following his doctoral training, he completed a PGY1 general practice residency at the Stratton VA Medical Center in Albany, NY. Immediately following his general practice residency, he trained with Drs. Jeff Fudin and Erica Wegrzyn and completed a PGY2 Pain and Palliative Care residency at the same institution.

Disclosure Statement

Scientific Advisory Board: PainScript, LLC

Consultant: Hisamitsu America, Inc.

Objectives

- Delineate between the various pharmacologic mechanisms of buprenorphine that allow its side effects to plateau, but not its analgesic effects.
- Identify the clinical trials that have demonstrated a relative ceiling effect that buprenorphine allows for on various opioidrelated adverse effects.
- Recognize the breadth clinical efficacy data that buprenorphine has shown supporting its analgesic potential and place on the analgesic ladder.

Current Landscape of Buprenorphine

Current Landscape of Buprenorphine

- Annual rate per 1,000 population of buprenorphine use has been increasing
 - 1.97 in 2009 \rightarrow 4.43 in 2018¹
- Namely driven by policy changes and enhanced awareness of use for opioid use disorder
- Despite this, still drastically underutilized and underrepresented for use in patients with chronic pain²

^{2.} Rosen K, et al. Clin J Pain. 2014;30(4):295-300

History of Buprenorphine

- First approved 1985 as injectable Buprenex
 - For treatment of moderate to severe pain

- Since that time, eight (8) additional products have come to market
 - Six (6) of these products have approvals for opioid dependence
 - Two (2) of these products have approvals for management of pain

Buprenorphine Products Available

Brand Name	Generic Name	Formulation	FDA-Approved Indications	Bioavailability	Elimination Half-Life
Suboxone™	Buprenorphine and naloxone	Sublingual film	Treatment of opioid dependence	~30%	24 to 42 hours
Subutex®	Buprenorphine	Sublingual film	Treatment of opioid dependence and are preferred for induction.	~30%	31 to 35 hours
Zubsolv®	Buprenorphine and naloxone	Sublingual tablet	Treatment of opioid dependence	~30%	24 to 42 hours
Bunavail TM	Buprenorphine and naloxone	Buccal film	Treatment of opioid dependence	~30%	16.4 to 27.5 hours
Sublocade®	Buprenorphine	Abdominal subcutaneous injection	Treatment of moderate to severe opioid use disorder	100%	43 to 60 days
Probuphine®	Buprenorphine	Implant for subdermal administration (6-month implant)	Maintenance treatment of opioid dependence in patients who have achieved prolonged clinical stability on low-to-moderate doses of a transmucosal buprenorphine-containing product	31.3%	24 to 48 hours
Buprenex®	Buprenorphine	Intravenous or intramuscular	Management of pain severe enough to require opioid therapy	100%	1.2 to 7.2 hours
Butrans®	Buprenorphine	Transdermal delivery system	Management of pain severe enough to require around-the-clock, long-term opioid treatment	~15%	~26 hours
Belbuca™	Buprenorphine	Buccal film	Management of pain severe enough to require around-the-clock, long-term opioid treatment	46 to 65%	11.2 to 27.6 hours

Pharmacology of Buprenorphine

Pharmacologic Characteristics

- Considered a 'partial-agonis't at mu-opioid receptors (MORs) and an antagonist at kappa-opioid receptors (KORs)
 - Agonist of opioid receptor-like 1 (low affinity)
- Partial agonist definition primarily due to lower intrinsic activity compared to full MOR agonists in in vitro binding receptor assay studies
 - SHOULD NOT BE CONFUSED WITH MEASURES OF CLINICAL EFFICACY!!!
- High binding affinity toward MORs compared to all other opioids
- Slow dissociation rate from MORs (~90 minutes)

Comparison of Binding Affinities (Ki) of MOR Agonists

Drug	Ki Value (nM)	Drug	Ki Value (nM)
Sufentanil	0.1380	Alfentanil	7.391
Buprenorphine	0.2157	Diphenoxylate	12.37
Hydromorphone	0.3654	Oxycodone	25.87
Oxymorphone	0.4055	Hydrocodone	41.58
Levorphanol	0.4194	Pentazocine	117.8
Butorphanol	0.7622	Propoxyphene	120.2
Morphine	1.168	Meperidine	450.1
Fentanyl	1.346	Codeine	734.2
Nalbuphine	2.118	Tramadol	12,486
Methadone	3.378		

The Question is...

If it is a Partial Agonist, Does that mean it has Partial Analgesic Effects?

Why is it Considered a 'Partial Agonist'?

- Buprenorphine has demonstrated to produce less than a 100% effect in vitro when binding to and activating G-proteins at MORs
- Specifically, when any opioid binds to and activates MORs...
 - G_a subunits are catalyzed releasing $G_{\beta \nu}$ along the membrane
 - Leads to inhibition of adenyl cyclase, reduction in calcium currents
 - Deactivation of G-protein gated inward rectifying potassium channel
 - Eventual cellular hyperpolarization and thus cellular hyperpolarization
- However, different isoforms of G_a have been identified...

Theory 1: Varying Isoforms of G_a Subunits Allowing for Different Intrinsic Activities

Table 2. Comparison of buprenorphine and morphine activation of MOR via different G-proteins

Comparison of buprenorphine and morphine activation of MOR via different G-proteins¹³

	$\mathbf{G}\alpha_{\mathbf{o}\mathbf{A}}$	$\mathbf{G}\alpha_{\mathbf{oB}}$	$G\alpha_z$	$G\alpha_{i1}$	$\mathbf{G}\alpha_{\mathbf{i}2}$	$G\alpha_{i3}$
Buprenorphine	87 percent	89 percent	92 percent	42 percent	12 percent	57 percent
Morphine	100 percent	100 percent	100 percent	95 percent	76 percent	93 percent

Bidlack et al. used Bioluminescence Resonance Energy Transfer to measure different Emax values from [35 S]GTP γ S binding assays depending on the G-protein subunit activated at human MORs expressed on stable Chinese hamster ovary cells by buprenorphine or morphine.

The Role of β-Arrestin

- β-Arrestin 1 and 2:
 - Proteins that normally bind phosphorylated G-proteincoupled MORs
 - Independent of intracellular cascade mentioned before
- β-Arrestin recruitment is associated with desensitization and sequestration of MORs
- Genetic disruption of β-Arrestin allowed for attenuation of respiratory depression and acute constipation caused by morphine
 - However, did NOT arrest anti-nociception

Theory 2: Buprenorphine Associated with Lower β-Arrestin Recruitment

- McPherson et al, Chen et al, Grinnell et al, Bidlack et al...
 - All four studies tested recruitment of β -Arrestin proteins by buprenorphine
- All four studies found little to no recruitment of β-Arrestin by buprenorphine
- Bidlack et al specifically found buprenorphine only mediated 33% β-Arrestin recruitment at MORs
 - Morphine mediated 85% recruitment

Spinal Versus Supraspinal Differences

- Theoretically, analgesic effects of opioids may be mediated within various centers of the brain structure, as well as throughout the descending pain pathway of the spine and peripheral sites as well
- Comparatively, most opioid-related side effects rely on opioid binding and activating MORs within supraspinal (brain) structures
 - MORs within parabrachial nucleus and pre-Bortzinger complex → Respiratory depression
 - MORs within ventral tegmental area and nigrostriatal cortex → Euphoria
 - MORs within chemoreceptor trigger zone → Nausea/vomiting

Theory 3: Buprenorphine has Greater Spinal VS Supraspinal Activity

	Effects of Subcutaneous Buprenorphine	Effects of Subcutaneous Morphine	Effects of Subcutaneous Fentanyl
Pretreatment with Intraperitoneal Naloxone	Effects were antagonized	Effects were antagonized	Effects were antagonized
Pretreatment with Intrathecal Naloxone	Effects were antagonized	Effects were antagonized	Effects were antagonized
Pretreatment with Intracerebroventricul ar Naloxone	Effects were NOT antagonized	Effects were antagonized	Effects were antagonized

Intraperitoneal and intrathecal administration of naloxone were characterized as "spinal administration", while intracerebroventricular was characterized as "supraspinal administration".

Effects were measure by anti-nociception

Ok, So What About its Analgesic Efficacy?

Measures of Clinical Efficacy for PAIN

Authors	Year	Interventions	Type of Pain	Number of Patients	Outcome		
IV/IM Buprenorphine							
Downing JW et al	1977	IM Buprenorphine 0.6mg IM Morphine 15mg	Post-operative pain following Caesarean section	58	Similar pain relief for first 2-post op hours; greater pain relief after 3h		
Hovell BC et al	1977	IM Buprenorphine 0.3mg IM Morphine 10mg	Post-operative pain following abdominal surgery	50	Similar pain relief		
Dobkin AB et al	1977	IM Buprenorphine 0.2-0.4mg IM Morphine 5-10mg	Post-operative pain following abdominal surgery	40	Similar or greater pain relief with buprenorphine		
Kay B	1978	IV Buprenorphine 0.3mg IV Morphine 10mg	Post-operative following major abdominal surgery	51	Similar pain relief		
Tigerstedt I et al	1980	IM Buprenorphine 0.3mg IM Morphine 10mg	Post-operative pain following abdominal surgery	60	Similar pain relief		
Ouellette RD et al	1984	IM Buprenorphine 0.15-0.4mg IM Morphine 5-10mg	Post-operative pain following major abdominal, orthopedic, or thoracic surgery	133	Similar pain relief		
Cuschieri RJ et al	1984	IM Buprenorphine 0.3mg IM Morphine 10mg	Post-operative pain following abdominal surgery	80	Similar pain relief		
Bradley JP	1984	IV Buprenorphine 5mcg/Kg IV Morphine 167mcg/Kg	Post-operative following abdominal hysterectomy or cholecystectomy	80	Similar pain relief		
Donadoni R et al	1987	IM Buprenorphine 0.3mg Epidural Sufentanil 50mcg	Post-operative following orthopedic surgery	60	Less pain relief over first 2 hours, but greater pain relief from hours 2 to 8		
Rabinov M et al	1987	IV Buprenorphine 0.35mg IV on demand IV Morphine 0.5-6mg/hour IV infusion	Post-operative following coronary bypass surgery	13	Similar pain relief		
Maunuksela EL et al	1988	IV Buprenorphine 1.5 or 3mcg/Kg IV Morphine 50 or 100mcg/Kg	Post-operative following lateral thoracotomy in children	57	Similar pain relief		
Lehmann KA et al	1991	PCA Buprenorphine PCA Fentanyl	Post-operative following unilateral thoracotomy	60	Similar pain relief		
Oifa S et al	2009	Basal and bolus buprenorphine Basal and bolus morphine	Post-operative following abdominal surgery	120	Similar pain relief		

Measures of Clinical Efficacy for PAIN

Authors	Year	Interventions	Type of Pain	Number of Patients	Outcome		
SL Buprenorphine							
Edge WG et al	1979	SL Buprenorphine 0.4mg IM morphine 10mg	Post-operative following general surgery	N/a	Similar or greater pain relief with buprenorphine		
Masson AH et al	1981	SL Buprenorphine 0.4mg Dihydrocodeine 60mg	Post-operative following general surgery	79	Similar or greater pain relief with buprenorphine		
Wallenstein SL	1982	SL Buprenorphine 0.8mg IM Morphine 8mg	Chronic cancer pain	8	Similar pain relief		
Gaitini L et al	1996	SL Buprenorphine 1.6 <u>+</u> 0.45mg PCA Morphine 72 <u>+</u> 8mg	Post-operative pain following open prostatectomy	52	Similar pain relief		
Brema et al	1996	SL Buprenorphine 0.2mg Q6H Tramadol 100mg Q8H	Chronic neoplastic pain	131	Greater pain relief with tramadol		
Neumann et al	2013	SL Buprenorphine/naloxone 14.93mg/3.73mg Methadone 20-60mg/day	Chronic non-cancer pain related to spine or large joint	54	Similar pain relief		
		Transder	mal Buprenorphine				
Aurilio C et al	2009	Transdermal Buprenorphine Transdermal Fentanyl	Chronic cancer pain	32	Similar pain relief		
Mitra F	2013	Transdermal Buprenorphine Transdermal Fentanyl	Chronic persistent pain	46	Similar pain improvements in initial 6 months		
Buccal Buprenorphine							
Webster et al	2016	Rotation from morphine or oxycodone to buprenorphine	Chronic pain	39	Similar pain relief after transition		

What About Dose Titrations????

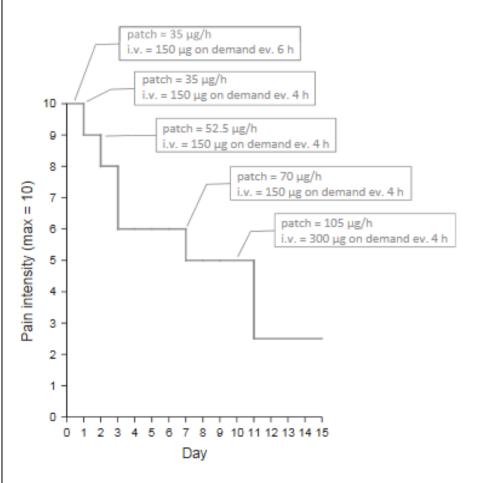


Fig. 5. Progressive increase in pain relief with increasing dose of buprenorphine in a terminally ill cancer patient with liver failure. Drawn based on the narrative in Ciccozzi et al.³⁹

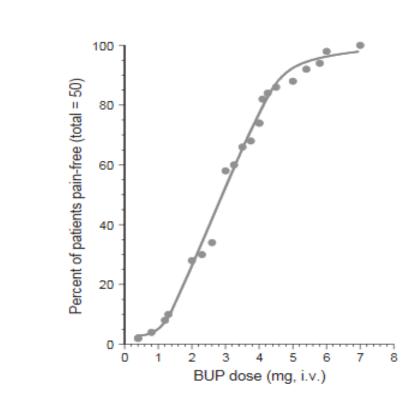
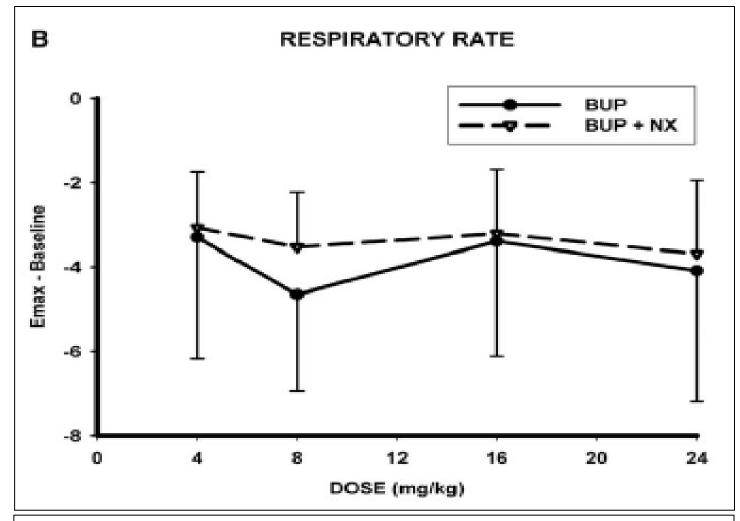
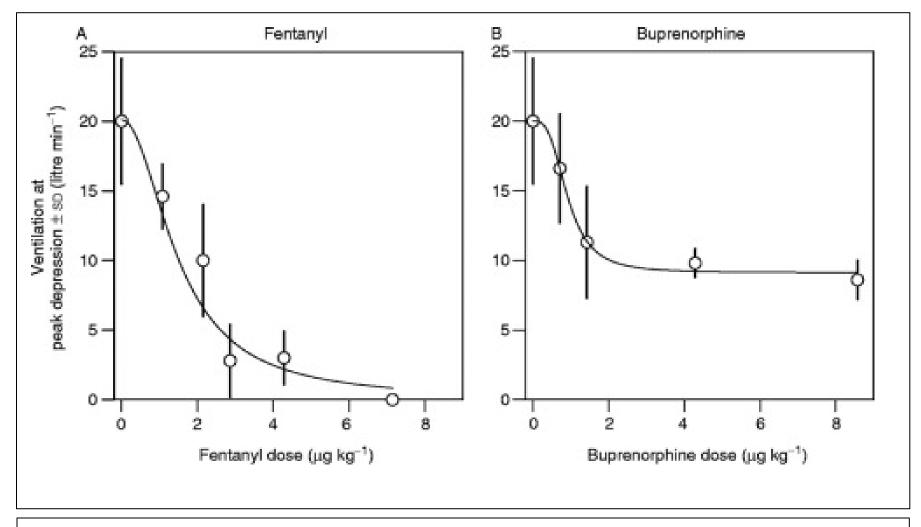


Fig. 6. The analgesic efficacy of i.v. buprenorphine was studied over a 24-h period in post-operative pain relief involving 50 patients (average age = 27.5 years) recovering from elective Caesarean section. Post-operatively, patients received buprenorphine in aliquots of 0.2 mg over 3–15 min, until the pain was relieved. Pain was assessed by its presence or absence at frequent intervals. All of the patients achieved complete analgesic effect with 0.4–7.0 mg of buprenorphine. Drawn based on data reported in Budd. 40

What about Butrans and Belbuca?


- As shown in the table, transdermal buprenorphine has shown some direct, head-to-head clinical pain efficacy against full agonist opioids
- There is no head-to-head data on Belbuca against full agonist opioids
 - However, evidence in opioid-experienced patients (≤ 160mg MMED) who were switched to and titrated on Belbuca allowed for reduction of pain to mild levels
- Higher allowable doses of Belbuca may allow for better pain effects than Butrans

What About Side Effects?


Respiratory Effects

Change in respiratory rate in humans from baseline of titrating doses of Suboxone, up to 24mg doses

Respiratory Effects

Minute ventilation at a fixed end-tidal after titrating doses of fentanyl and buprenorphine in humans

Abuse Potential?

- Has been shown to elevate feelings of euphoria, well-being, and pleasure
 - Particularly intravenous buprenorphine
- Also has been shown to be self-administered above placebo levels in non-opioid-dependent, recently detoxified individuals
- Comer et al showed that in morphine-maintained heroin abusers, buprenorphine produced increases in positive subjective ratings of likability, HOWEVER:
 - Only opioid to produce statistically significant increases in ratings of "I feel a bad drug effect"
 - Only opioid NOT self-administered above placebo at any dose tested

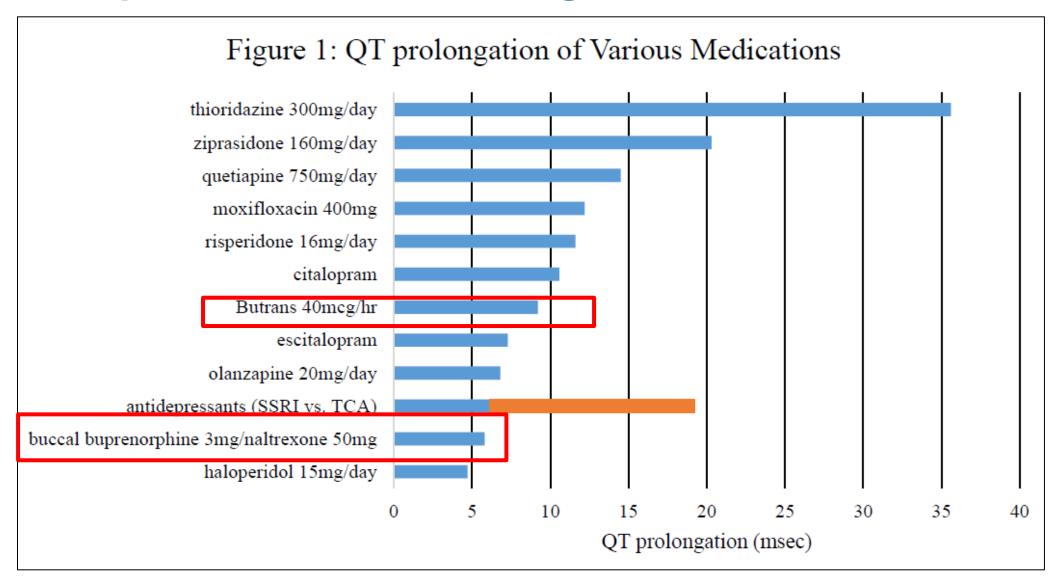
Gastrointestinal Motility?

- Traditionally lower rates of constipation in trials compared to other opioids (1-5%)
- Tassinari et al showed that TDS buprenorphine was associated with significantly less constipation than equianalgesic doses of SA morphine
- Unlike many opioids, buprenorphine does NOT cause spasm of the sphincter of Oddi

Evans HC et al. Drugs. 2003;63(19):1999-2010; Likar R et al. Clin Ther. 2006;28(6):943-952; Wirz S et al. Eur J Pain. 2009;13(7):737-743; Tassinari D et al. 2008;11(3):492-501

Suppression of Hypogonadal Axis?

- Multiple studies have shown evidence of decreased effect on hypogonadal axis
- Hallinan et al showed that men on maintenance buprenorphine therapy compared to methadone had:
 - Higher testosterone levels
 - Less sexual dysfunction
- Wersocki et al found that transdermal buprenorphine:
 - Was not associated with changes in menstrual cycle in women
 - Was not associated with hormonal changes



QTc Interval?

- Both Butrans and Belbuca have warnings regarding potential for QTc prolongation
 - Other formulations do not
- Harris et al showed:
 - Butrans 10mcg/hr did NOT have clinically meaningful effect on mean QTc
 - Butrans 40mcg/hr resulted in a **MAXIMUM** QTc prolongation of 9.2 msec
- Per package insert, in doses of Belbuca up to 900mcg Q12H, 2% demonstrated prolonged QTc of 450-480 msec
- Several other studies have not found buprenorphine to be associated with QTc prolongation when used in opioid use disorder

Comparison of QTc Prolongation of Various Medications

What Could be Buprenorphine's Niche?

Populations that Buprenorphine Could be Safer in than Other Opioids?

- Those at higher risk of respiratory depression?
 - Still a risk, especially with use of other depressant medications
- Those with a history of substance abuse?
 - What about current substance abuse?
- Those at higher risk of endocrine effects?
 - Osteopenia/osteoporosis
 - Hypogonadal disorders
- Prolonged QTc?

Ultimate Place in Therapy

- Would not recommend buprenorphine use over non-opioids for pain management
 - Still significant risks with use
- However, there appears to be evidence to suggest that opioid-related risks may be less than traditional MOR agonists
 - Also evidence that buprenorphine is as clinically effective as an analgesic
- Should it be used prior to consideration of any MOR agonist?
 - Probably

Butrans or Belbuca?

- Overall, Belbuca allows for increased amounts of systemic absorption of buprenorphine than Butrans
 - Therefore, probably better for those on higher doses of MOR agonists
- If considering for those opioid-naïve or those on lower doses of MOR agonists
 - Butrans could be used over Belbuca
- Butrans also may be easier for patients with compliance issues

Summary

- Buprenorphine has different pharmacologic and pharmacokinetic characteristics that allows it to be a unique option for treatment of chronic pain and/or opioid use disorder
- Clinical evidence suggest that although there appears to be a "ceiling effect" on certain opioid-related adverse events (respiratory depression, constipation), there does not appear to be this same effect on analgesia
- Its ultimate place in therapy for chronic pain has yet to be determined, however in the majority of cases, it should probably be considered over most other opioid-agonist medications (if they are appropriate)

Questions?

Nursing Home and Partnership for Community Health:

CMS 12th SOW GOALS

OPIOID UTILIZATION AND MISUSE

Promote opioid best practices

Reduce opioid adverse drug events in all settings

PATIENT SAFETY

Reduce hospitalizations due to c. diff

Reduce adverse drug events

Reduce facility acquired infections

CHRONIC DISEASE SELF-MANAGEMENT

Increase instances of adequately diagnosed and controlled hypertension

Increase use of cardiac rehabilitation programs

Reduce instances of uncontrolled diabetes

Identify patients at highrisk for kidney disease and improve outcomes

CARE COORDINATION

Convene community coalitions

Reduce avoidable readmissions, admissions to hospitals and preventable emergency department visits

Identify and promote optimal care for super utilizers

COVID-19

Support nursing homes by establishing a safe visitor policy and cohort plan

Provide virtual events to support infection control and prevention

Support nursing homes and community coalitions with emergency preparedness plans

IMMUNIZATION

Increase influenza, pneumococcal, and COVID-19 vaccination rates


TRAINING

Encourage completion of infection control and prevention trainings by front line clinical and management staff

Nursing Home and Partnership for Community Health: CMS 12TH SOW GOALS ICONS FOR USE

Program Directors

Making Health Care Better Together ALABAMA · FLORIDA · GEORGIA · KENTUCKY · LOUISIANA · NORTH CAROLINA · TENNESSE

Alliant Health Solutions

This material was prepared by Alliant Health Solutions, a Quality Innovation Network – Quality Improvement Organization (QIN – QIO) and Hospital Quality Improvement Contractor (HQIC) under contract with the Centers for Medicare & Medicaid Services (CMS), an agency of the U.S. Department of Health and Human Services (HHS). Views expressed in this material do not necessarily reflect the official views or policy of CMS or HHS, and any reference to a specific product or entity herein does not constitute endorsement of that product or entity by CMS or HHS. Publication No. 12SOW-AHS-QIN-QIO TO1-NH TO1-PCH--3699-05/04/23

