Georgia Department of Public Health: Strike & Support Team GADPH Office Hours for Medical Directors, NHs & SNFs
April 21, 2023
Meet the Team

Presenters:

Swati Gaur, MD, MBA, CMD, AGSF
Medical Director, Alliant Health Solutions

JoAnna M. Wagner, RN, BSN, BHSA, CIC
Nurse Epidemiologist/Lead Infection Preventionist
Healthcare-Associated Infections Team
Georgia Department of Public Health
Dr. Swati Gaur is the medical director of New Horizons Nursing Facilities with the Northeast Georgia Health System. She is also the CEO of Care Advances Through Technology, a technology innovation company. In addition, Dr. Gaur is on the electronic medical record (EMR) transition and implementation team for the health system, providing direction to EMR entity adaption to the long-term care (LTC) environment. She has also consulted with post-acute long-term care (PALTC) companies on optimizing medical services in PALTC facilities, integrating medical directors and clinicians into the QAPI framework, and creating frameworks of interdisciplinary work in the organization. Dr. Gaur established the palliative care service line at the Northeast Georgia Health System.

She also is an attending physician in several nursing facilities. Dr. Gaur attended medical school in Bhopal, India, and started her residency in internal medicine at St. Luke’s–Roosevelt Medical Center in New York. She completed her fellowship in geriatrics at the University of Pittsburgh Medical Center and is board certified in internal medicine, geriatrics, hospice, and palliative medicine. In addition, she earned a master’s in business administration at the Georgia Institute of Technology with a concentration in technology management.
JoAnna has been with the Georgia Department of Public Health since 2016 and is currently the nurse epidemiologist/lead infection preventionist for the Acute Disease and Epidemiology Section, Healthcare-Associated Infections Team. She leads a team of eight infection preventionists whose focus is the investigation of outbreaks in healthcare facilities involving multi-drug resistant organisms. She has been involved with COVID-19 response for long-term care facilities since March 2020. She has been a nurse for 23 years and has worked as an infection preventionist for 19 years.
Thank You to Our Partners

• Georgia Department of Public Health
• University of Georgia
Objectives

• Provide an update on the COVID-19 pandemic

• Provide updates on the Infection Prevention & Control (IPC) resource boxes for nursing facilities

• Discuss Candida auris in Georgia and what you need to know for preparedness and response

• Share Alliant Health Solutions resources to support your infection prevention and control initiatives

• Address any facility-specific IPC questions or concerns
Wastewater Surveillance

Percent change of SARS-CoV-2 in the last 15 days by site, United States

<table>
<thead>
<tr>
<th>15-day % change category</th>
<th>Num. sites</th>
<th>% sites</th>
<th>Category change in last 7 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 100%</td>
<td>29</td>
<td>3</td>
<td>38%</td>
</tr>
<tr>
<td>- 99% to - 10%</td>
<td>560</td>
<td>51</td>
<td>- 20%</td>
</tr>
<tr>
<td>- 9% to 0%</td>
<td>84</td>
<td>8</td>
<td>- 21%</td>
</tr>
<tr>
<td>1% to 9%</td>
<td>44</td>
<td>4</td>
<td>- 25%</td>
</tr>
<tr>
<td>10% to 99%</td>
<td>175</td>
<td>16</td>
<td>6%</td>
</tr>
<tr>
<td>100% to 999%</td>
<td>119</td>
<td>11</td>
<td>7%</td>
</tr>
<tr>
<td>1000% or more</td>
<td>93</td>
<td>8</td>
<td>60%</td>
</tr>
</tbody>
</table>
COVID-19 Cases in Nursing Home Residents

Nursing Home Covid-19 Data Dashboard

Week Ending: April 9
Count COVID-19 Cases: 5,512
Rate of COVID-19 Cases: 4.9
COVID-19 Deaths in Nursing Home Residents

Nursing Home Covid-19 Data Dashboard

Week Ending* April 9
Count COVID-19 Deaths 132
Rate of COVID-19 Deaths 0.1
Variant Distribution for COVID-19

Weighted Estimates: Variant proportions based on reported genomic sequencing results

USA

<table>
<thead>
<tr>
<th>WHO label</th>
<th>Lineage #</th>
<th>US Class</th>
<th>%Total</th>
<th>95% PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omicron</td>
<td>XBB.1.5</td>
<td>VOC</td>
<td>78.0%</td>
<td>73.6-81.8%</td>
</tr>
<tr>
<td></td>
<td>XBB.1.16</td>
<td>VOC</td>
<td>7.2%</td>
<td>4.5-11.3%</td>
</tr>
<tr>
<td></td>
<td>XBB.1.9.1</td>
<td>VOC</td>
<td>6.5%</td>
<td>4.8-8.8%</td>
</tr>
<tr>
<td></td>
<td>XBB.1.9.2</td>
<td>VOC</td>
<td>2.5%</td>
<td>1.5-4.1%</td>
</tr>
<tr>
<td></td>
<td>XBB.1.5.1</td>
<td>VOC</td>
<td>2.4%</td>
<td>1.8-3.1%</td>
</tr>
<tr>
<td></td>
<td>FD.2</td>
<td>VOC</td>
<td>1.7%</td>
<td>0.9-3.2%</td>
</tr>
<tr>
<td></td>
<td>BQ.1.1</td>
<td>VOC</td>
<td>1.0%</td>
<td>0.6-1.5%</td>
</tr>
<tr>
<td></td>
<td>CH.1.1</td>
<td>VOC</td>
<td>0.3%</td>
<td>0.2-0.5%</td>
</tr>
<tr>
<td></td>
<td>XBB</td>
<td>VOC</td>
<td>0.3%</td>
<td>0.2-0.3%</td>
</tr>
<tr>
<td></td>
<td>BQ.1</td>
<td>VOC</td>
<td>0.1%</td>
<td>0.1-0.2%</td>
</tr>
<tr>
<td></td>
<td>BN.1</td>
<td>VOC</td>
<td>0.0%</td>
<td>0.0-0.0%</td>
</tr>
<tr>
<td></td>
<td>BA.5</td>
<td>VOC</td>
<td>0.0%</td>
<td>0.0-0.0%</td>
</tr>
<tr>
<td></td>
<td>BA.2.75</td>
<td>VOC</td>
<td>0.0%</td>
<td>0.0-0.0%</td>
</tr>
<tr>
<td></td>
<td>BF.7</td>
<td>VOC</td>
<td>0.0%</td>
<td>0.0-0.0%</td>
</tr>
<tr>
<td></td>
<td>BA.2</td>
<td>VOC</td>
<td>0.0%</td>
<td>0.0-0.0%</td>
</tr>
<tr>
<td></td>
<td>BA.1.1</td>
<td>VOC</td>
<td>0.0%</td>
<td>0.0-0.0%</td>
</tr>
<tr>
<td></td>
<td>BA.5.2.6</td>
<td>VOC</td>
<td>0.0%</td>
<td>0.0-0.0%</td>
</tr>
<tr>
<td></td>
<td>BF.11</td>
<td>VOC</td>
<td>0.0%</td>
<td>0.0-0.0%</td>
</tr>
</tbody>
</table>
Where Are We in the Epidemic?

Percentage of all deaths due to pneumonia, influenza, and COVID-19, National Summary

Show Number of Influenza Deaths and COVID Deaths

Season: 2022-23, Week: 14
- % of Deaths due to PIC 7.6%
- Influenza Coded Deaths 13
- COVID Coded Deaths 509
- Threshold 7
- Baseline 6.7

MMWR Week

% of Deaths Due to PIC

of Deaths
Resource Boxes Are on the Way!

- CDC Grant
- Partnership with UGA and Alliant
- Resource needs recognized via DPH HAI Team ICARs
Infection Prevention Resource Boxes

- Resource boxes contain the following:
 - APIC Long-term Care Text
 - Quick Reference for Microbes
 - Glo Germ Kits
 - N-95 Fit-testing Kits
 - Resources and Tools
Candida auris in Georgia

What You Need To Know for Preparedness and Response

Alliant DPH Strike Team Office Hours Presentation for SNFs
JoAnna Wagner, RN, CIC, DPH
Nurse Epidemiologist/Lead Infection Preventionist
April 21, 2023
Who We Are

• Georgia Department of Public Health
• Team of infection preventionists
• Offer free, non-regulatory infection prevention consultation
• Conduct consults and virtual walk-throughs using Zoom and onsite visits
• Provide resources; remain current with CDC recommendations for healthcare facilities

• Contact us at hai@dph.ga.gov
Increasing Cases in Georgia

C. auris Cases Over Time, Georgia

Quarter Specimen Collected

Case Count

- Count of Screening
- Count of Clinical

Georgia Department of Public Health
Candida auris: The Sneaky Spreader

• Candida auris Presence in Georgia: What You Need to Know for Preparedness and Response
• May 2022
Urgent Threats

These germs are public health threats that require urgent and aggressive action:

- CARBAPENEM-RESISTANT ACINETOBACTER
- CANDIDA AURIS
- CLOSTRIDIOIDES DIFFICILE
- CARBAPENEM-RESISTANT ENTEROBACTERIACEAE
- DRUG-RESISTANT NEISSERIA GONORRHOEAE
Why Are We Concerned About Candida auris?

- Highly drug-resistant
- Patients can become colonized and develop invasive infections
- Spreads in healthcare settings
Resistance: *C. auris*

- 32% multidrug-resistant
- multiple pan-resistant cases reported in the United States since 2019

33% Polyenes

1% Echinocandins
Increasing Transmission of *C. auris* in the United States
Typically Affects the Sickest of the Sick

- Tracheostomies
- Ventilator-dependent
- Multiple health care encounters
- Colonized with other multidrug-resistant organisms
- Recently received antibiotics and antifungals
- Not a threat to the general public or healthy individuals
vSNFs and LTACHs Are Disproportionately Affected

C. auris prevalence

in vSNFs: 23-71%
in LTACHs: 23-36%

C. auris prevalence

in SNFs: 0-2%
in ACHs: 0-14%

vSNF = skilled nursing facility with ventilator units; LTACH = long-term acute care hospital
SNF = skilled nursing facility ACH = short-stay acute care hospital

Gaps in Interfacility Communication Contribute To Spread

Spread is often amplified in high-acuity post-acute care facilities

- Long lengths of stay
- High acuity patients with multiple healthcare encounters
- Less infection control infrastructure than short-stay acute care hospitals

LTACH = long-term acute care hospital

Large Outbreak in a Hospital COVID-19 Unit in Florida

- Half of the patients screened for *C. auris* were positive for colonization
- 17% of colonized patients later had clinical cultures
- Healthcare personnel wearing multiple layers of gowns and gloves
 - Extended use of base layer for multiple patients
 - Many opportunities for contaminating the base layer
 - Might be motivated by fear of becoming infected
Patients Are Often Colonized Indefinitely

- Primarily on skin
 - Nares and other body sites also can become colonized
 - Recommend screening by swabbing the axilla/groin

- Persistent for many months

- No currently known decolonization strategies

- Can lead to:
 - Transmission to others
 - Invasive infection
Clearance of Colonization is Rare

Can Cause Invasive Infections and High Mortality
5%-10% of colonized patients develop bloodstream infections

Mortality of invasive infections is
~40% within the first 30 days

C. *auris* Colonization Doesn’t Just Get Spread to Roommates—All Other Patients on the Unit Are at Risk
vSNF A Ventilator/Trach Floor
March 2017 *C. auris* PPS Results

C. auris colonization prevalence=1.5% (1/69)

- ● *C. auris* positive
- ○ Screened negative for *C. auris*
- ○ Not tested for *C. auris* (refused or not in room)
vSNF A Ventilator/Trach Floor
January 2018 *C. auris* PPS Results

C. auris colonization prevalence = 43% (29/67)

- **C. auris** positive
- Screened negative for *C. auris*
- Not tested for *C. auris* (refused or not in room)
vSNF A Ventilator/Trach Floor
January 2018 CPO and *C. auris* PPS Results

C. auris and CPO colonization

- **C. auris**
- **C. auris** and KPC
- KPC or CRE with unknown mechanism of resistance
- **C. auris**, KPC, and NDM
- **C. auris**, VIM-CRPA, and KPC
- **C. auris** and KPC-CRPA

- Screened negative for **C. auris**, but not tested for CRE
- Screened negative for CRE and **C. auris**
C. *auris* Persists in the Environment

- Can survive over a month
- Some common disinfectants (quaternary ammonia compounds) don’t work
C* auris* is frequently transmitted via shared, mobile equipment that is not properly cleaned and disinfected between patients/residents.
Early Detection and Containment
Identification of *C. auris* Cases Has Been Challenging

- Misidentification by different diagnostic methods
- Yeast not identified to species level
 - Yeast from urine usually tossed out because not considered an infection
 - Only about 50% of clinical cases are from blood
- Missed detection of colonization cases without screening
Early Detection is Key to Controlling Spread

• Earlier detection allows for earlier infection control precautions
• Strategies for early identification
 – Species identification of all *Candida* specimens
 – Screening high-risk patients*
 – Periodic point prevalence surveys in high-risk facilities, even those without known cases

*From facilities/areas with high *C. auris* burden or outbreaks, healthcare abroad, healthcare contacts of cases
Prevention Strategies: Back to the Basics

- Hand Hygiene
- Transmission-based precautions & Personal Protective Equipment
- Environmental Cleaning & Disinfection

[Image: CDC logo]
Disinfectants During COVID-19

- Many common disinfectants effective against COVID-19 are not effective against C. auris
 - especially products with only quaternary ammonium compounds
- List P: new list of EPA-approved disinfectants for C. auris
 - All are also effective against COVID-19
Infection Prevention Education

https://www.cdc.gov/infectioncontrol/projectfirstline/healthcare/educational-materials.html#print
Coordinated Communication Between Facilities and Health Departments Is Essential To Prevent Spread

Facilities work together to protect patients.
Containment Steps After a Case of C. auris Is Found

• Report to the health department
• Infection control and staff education
• Screen patients with healthcare contact or high-risk patients
• Lab surveillance
• Consider other connected facilities
Containment Strategies Before the First C. auris Case

- Assess infection control and ensure good IPC practices
- Use a disinfectant effective against C. auris
- Strengthen communication (interfacility and intrafacility) about C. auris for transferred patients/residents
- Species identification of yeast from any body site, not just invasive specimens
- Consider targeted screening
Antibiotic Resistance Laboratory Network

- Candida species identification
- Antifungal susceptibility testing
- C. auris colonization screening
Response Involves all Healthcare

• Residents are shared across the healthcare continuum
• Communication is not always in place to ensure infection prevention measures are being used
• In health care settings, drug-resistant organisms can be spread from person to person and between people and the environment
• Environmental cleaning, use of PPE, and good hand hygiene are some infection control measures that prevent transmission
LTCF and C. auris
Be Proactive

• Core Infection Prevention practices
 – Are current practices appropriate and consistent?
 – Are you assessing compliance?

• Check current disinfectant products

• Can you accept a C. auris-positive person?
 – Current CDC recommendations
 – Who are your “healthiest” residents?
Communication

Share
- Share relevant infection control information with transport staff and with the receiving facility.

Obtain
- When receiving a resident, obtain relevant infection control information.

Develop
- Develop relationships with the infection preventionists at your main transfer partner facilities.

Complete
- Complete the Infection Control Transfer Form. Place a copy on the outside of the envelope containing the resident's medical records.
 - Integrate elements from the transfer form into your EMR reporting tool.
Communication Tools

- Know your transfer partners in advance. Connect with main transfer partner Infection Preventionists.
- Engage in transfer communication when sending and receiving patients/residents.
- Different methods
 - Paper
 - Electronic medical record
 - Customize
- CDC Infection Control Transfer Form:
 - https://www.cdc.gov/hai/pdfs/toolkits/InfectionControlTransferFormExample1.pdf
- Alliant Health Solutions:
Resources

• General:

• C. auris IPC guidance:

• C. auris Fact Sheets:

• C. auris Tracking Information:
Thank you!

https://www.cdc.gov/fungal/candida-auris

Candidaauris@cdc.gov
Thank you!
Consult with the DPH Team! We are here to help!

<table>
<thead>
<tr>
<th>State Region/Districts</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>North (Rome, Dalton, Gainesville, Athens) Districts 1-1, 1-2, 2, 10</td>
<td>Sue.bunnell@dph.ga.gov (404-967-0582)</td>
</tr>
<tr>
<td>Atlanta Metro (Cobb-Douglas, Fulton, Clayton, Lawrenceville, DeKalb, LaGrange) Districts 3-1, 3-2, 3-3, 3-4, 3-5, 4</td>
<td>Teresa.Fox@dph.ga.gov (256-293-9994) Renee.Miller@dph.ga.gov (678-357-4797)</td>
</tr>
<tr>
<td>Central (Dublin, Macon, Augusta, & Columbus) Districts 5-1, 5-2, 6, 7</td>
<td>Theresa.Metro-Lewis@dph.ga.gov (404-967-0589) Karen.Williams13@dph.ga.gov (404-596-1732)</td>
</tr>
<tr>
<td>Southwest (Albany, Valdosta) Districts 8-1, 8-2</td>
<td>Connie.Stanfill1@dph.ga.gov (404-596-1940)</td>
</tr>
<tr>
<td>Southeast (Savannah, Waycross) Districts 9-1, 9-2</td>
<td>Lynn.Reynolds@dph.ga.gov (804-514-8756)</td>
</tr>
<tr>
<td>Backup/Nights/Weekends</td>
<td>Joanna.Wagner@dph.ga.gov (404-430-6316)</td>
</tr>
</tbody>
</table>
Thank you! Questions?

JoAnna M. Wagner, RN, BSN, BHSA, CIC
Nurse Epidemiologist/Lead Infection Preventionist
Georgia Department of Public Health
Acute Disease and Epidemiology Section

2 Peach Tree Street NW
Atlanta, GA 30303
Mobile: (404) 430-6316
joanna.wagner@dph.ga.gov
Questions?
Alliant Health Solutions Resources

https://quality.allianthealth.org/topic/infection-control/
Thank You for Your Time!
Contact the AHS Patient Safety Team

Amy Ward, MS, BSN, RN, CIC
Patient Safety Manager
Amy.Ward@AlliantHealth.org
678.527.3653

Donald Chitanda, MPH, CIC
Technical Advisor, Infection Prevention
Donald.Chitanda@AlliantHealth.org
678.527.3651

Paula St. Hill, MPH, A-IPC
Technical Advisor, Infection Prevention
Paula.StHill@AlliantHealth.org
678.527.3619

Erica Umeakunne, MSN, MPH, APRN, CIC
Infection Prevention Specialist
Erica.Umeakunne@AlliantHealth.org
Save the Date

SNF and Medical Directors Office Hours:
May 19, 2023 | 11 a.m. ET

ALF and PCH
April 28, 2023 | 11 a.m. ET
May 26, 2023 | 11 a.m. ET
Thanks Again…

- Georgia Department of Public Health
- University of Georgia