Meet the Team

Presenters:

Swati Gaur, MD, MBA, CMD, AGSF
Medical Director
Alliant Health Solutions

Connie Stanfill, MT,CIC
Infection Preventionist
Georgia Department of Public Health
Dr. Swati Gaur is the Medical Director of New Horizons Nursing Facilities with the Northeast Georgia Health System. She is also the CEO of Care Advances Through Technology, a technology innovation company. In addition, she is on the electronic medical record (EMR) transition and implementation team for the health system, providing direction to EMR entity adaption to the long-term care (LTC) environment. She has also consulted with post-acute long-term care (PALTC) companies on optimizing medical services in PALTC facilities, integrating medical directors and clinicians into the QAPI framework, and creating frameworks of interdisciplinary work in the organization. She established the palliative care service line at the Northeast Georgia Health System.

She also is an attending physician in several nursing facilities. Prior to that, Dr. Gaur was a medical director at the LTC at the Carl Vinson VA Medical Center and a member of the G&EC for VISN 7. Dr. Gaur attended medical school in Bhopal, India, and started her residency in internal medicine at St. Luke’s–Roosevelt Medical Center in New York. She completed her fellowship in geriatrics at the University of Pittsburgh Medical Center and is board certified in internal medicine, geriatrics, hospice, and palliative medicine. In addition, she earned a master’s in business administration at the Georgia Institute of Technology with a concentration in technology management.
Connie Stanfill, MT,CIC
Infection Preventionist, Healthcare-associated Infections (HAI) Team
Georgia Department of Public Health

Connie is an Infection Preventionist with the Acute Disease Epidemiology HAI division of the Georgia Department of Public Health. As a member of the Infection Prevention team, she is actively involved with Long-Term facilities providing COVID 19 and MDRO support. Her background is in Microbiology with 25+ years of experience and Infection Prevention with CBIC certification since 1996.
Thank You to Our Partners

• Georgia Department of Public Health
• University of Georgia
Wastewater Surveillance

Current SARS-CoV-2 Virus Levels by Site, United States

<table>
<thead>
<tr>
<th>Current Virus Levels Category</th>
<th>Num. Sites</th>
<th>% Sites</th>
<th>Category Change in Last 7 Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Site</td>
<td>102</td>
<td>8</td>
<td>10%</td>
</tr>
<tr>
<td>0% to 19%</td>
<td>103</td>
<td>8</td>
<td>7%</td>
</tr>
<tr>
<td>20% to 39%</td>
<td>316</td>
<td>25</td>
<td>- 2%</td>
</tr>
<tr>
<td>40% to 59%</td>
<td>446</td>
<td>35</td>
<td>- 4%</td>
</tr>
<tr>
<td>60% to 79%</td>
<td>270</td>
<td>21</td>
<td>- 12%</td>
</tr>
<tr>
<td>80% to 100%</td>
<td>43</td>
<td>3</td>
<td>- 19%</td>
</tr>
</tbody>
</table>

Total sites with current data: 1280
Total number of wastewater sampling sites: 1459
Confirmed COVID-19 Cases among Residents and Rate per 1,000 Resident-Weeks in Nursing Homes, by Week—United States

- Display by State
 - All

- Display by FEMA/HHS Region
 - All

*Data are likely accruing, all data can be modified from week-to-week by facilities
For the purpose of creating this time-series graph, data that fail certain quality checks or appear inconsistent with surveillance protocols are assigned a value based on their patterns for data-entry or excluded from analysis

Data source: Centers for Disease Control and Prevention, National Healthcare Safety Network
For more information: http://www.cdc.gov/nhsn/ltc/covid19/index.html
Accessibility: [Right click on the graph area to show as table]
<table>
<thead>
<tr>
<th>Week Ending*</th>
<th>Count COVID-19 Deaths</th>
<th>Rate of COVID-19 Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 8</td>
<td>428</td>
<td>0.4</td>
</tr>
<tr>
<td>January 15</td>
<td>389</td>
<td>0.3</td>
</tr>
<tr>
<td>January 22</td>
<td>335</td>
<td>0.3</td>
</tr>
<tr>
<td>January 29</td>
<td>296</td>
<td>0.2</td>
</tr>
<tr>
<td>February 5</td>
<td>265</td>
<td>0.2</td>
</tr>
<tr>
<td>February 12</td>
<td>243</td>
<td>0.2</td>
</tr>
<tr>
<td>February 19</td>
<td>235</td>
<td>0.2</td>
</tr>
<tr>
<td>February 26</td>
<td>240</td>
<td>0.2</td>
</tr>
<tr>
<td>March 5</td>
<td>211</td>
<td>0.2</td>
</tr>
</tbody>
</table>

* Enumerated lineages are US VOC and lineages circulating above 1% nationally in at least one week period. “Other” represents the aggregation of lineages which are circulating <1% nationally during all weeks displayed.
BA.1, BA.3 and their sublineages (except BA.1.1 and its sublineages) are aggregated with B.1.1.529. Except BA.2.12.1, BA.2.75, XBB and their sublineages, BA.2 sublineages are aggregated with BA.2. Except BA.2.75,2, CH.1.1 and BN.1, BA.2.75 sublineages are aggregated with BA.2.75. Except BA.4,6, sublineages of BA.4 are aggregated to BA.4. Except BF.7, BF.11, BA.5.2.6, BQ.1 and BQ.1.1, sublineages of BA.5 are aggregated to BA.5. Except XBB.1.5 and its sublineages, sublineages of XBB are aggregated to XBB. Except XBB.1.5, sublineages of XBB.1.5 are aggregated to XBB.1.5. For all the other lineages listed, their sublineages are aggregated to the listed parental lineages respectively. Previously, XBB.1.5 was aggregated to XBB.1.5. Lineages BA.2.75.2, XBB, XBB.B1.5, XBB.1.5.1, BN.1, BA.4.6, BF.7, BF.11, BA.5.2.6 and BQ.1.1 contain the spike substitution R346T.
Where are we in the epidemic?

Pneumonia, Influenza, and COVID-19 Mortality from the National Center for Health Statistics Mortality Surveillance System

Data as of March 9, 2023

- Number of Influenza Coded Deaths
- Number of COVID-19 Coded Deaths
- % of Deaths Due to PIC
- Baseline
- Threshold

Epidemic Threshold
Seasonal Baseline 2019

MMWR Week
Vaccine Effectiveness Against XBB

<table>
<thead>
<tr>
<th>≥65</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Received 2–4 monovalent doses only (Ref)</td>
<td>2,393</td>
<td>1,159 (48)</td>
<td>972 (41)</td>
<td>—</td>
<td>262 (11)</td>
</tr>
<tr>
<td>Overall (≥2 weeks since bivalent booster dose)</td>
<td>2,021</td>
<td>1,243 (62)</td>
<td>632 (31)</td>
<td>37 (28–44)</td>
<td>146 (7)</td>
</tr>
<tr>
<td>0–1 month since bivalent booster</td>
<td>381</td>
<td>260 (68)</td>
<td>94 (25)</td>
<td>55 (42–65)</td>
<td>27 (7)</td>
</tr>
<tr>
<td>2–3 months since bivalent booster</td>
<td>1,640</td>
<td>983 (60)</td>
<td>538 (33)</td>
<td>32 (21–40)</td>
<td>119 (7)</td>
</tr>
</tbody>
</table>

http://dx.doi.org/10.15585/mmwr.mm7205e1
Does Paxlovid work? Why prescribe a medication for mild-moderate COVID-19?

The benefit of a 5-day treatment course of Paxlovid was demonstrated in the clinical trial that supported the EUA. This study showed that among non-hospitalized, unvaccinated patients at high risk of progression to severe disease, treatment with Paxlovid reduced the risk of hospitalization or death by 88%.

Observational data, including vaccinated patients, from Israel¹, Hong Kong², and the United States is consistent with benefit in high-risk patients:

- 46% reduction in hospitalizations and deaths compared to the untreated¹
- 65% reduction in death compared to non-users²
- 51% lower hospitalization rate within 30 days after diagnosis than those who were not prescribed Paxlovid³
Paxlovid: Standard of Care

• Do not wait for symptoms once diagnosis is made
• Can be given if creatinine clearance is > 30
• Medication interaction: [FACT SHEET FOR HEALTHCARE PROVIDERS: EMERGENCY USE AUTHORIZATION FOR PAXLOVIDTM](#)
Does the EUA require a positive result from a direct SARS-CoV-2 viral test prior to prescribing Paxlovid to a patient who is at high risk for severe COVID-19?

No. Although the Agency continues to recommend that authorized prescribers use direct SARS-CoV-2 viral testing to help diagnose COVID-19, the Agency removed the requirement for positive test results effective February 1, 2023. FDA recognizes that, in rare instances, individuals with a recent known exposure (e.g., a household contact with a positive direct SARS-CoV-2 viral test) who develop signs and symptoms consistent with COVID-19 may be diagnosed by an authorized prescriber as having COVID-19 even if they have a negative direct SARS-CoV-2 viral test result. In such instances, the authorized prescriber may determine that treatment with Paxlovid for COVID-19 is appropriate if the patient reports mild-to-moderate symptoms of COVID-19 and is at high-risk for progression to severe COVID-19, including hospitalization or death, and the terms and conditions of the authorization are met, as detailed in the Fact Sheet for Healthcare Providers.
Microbiology Specimen Collection and Report Interpretation

Connie Stanfill, MT,CIC
Georgia Department of Public Health
What are the steps in specimen collection?

There are four steps involved in obtaining a good quality specimen for testing:

1. preparation of the patient
2. collection of the specimen
3. processing the specimen
4. storing and/or transporting the specimen
What are five reasons for specimen rejection that can occur in the laboratory?

Five most common reasons for specimen rejections:

1. Incorrect specimen collection container
2. Insufficient specimen quantity or specimen too large for container
3. Transported incorrectly
4. Incorrect media
5. Specimen stability compromised (i.e. age of specimen, temperature stored)
Safety Considerations

• Follow **STANDARD PRECAUTION** guidelines. Treat all specimens as potentially biohazardous.

• Use appropriate barrier protection (gloves, gown) when collecting or handling specimens.
 • If splashing is a possibility, protective eyewear, face mask and gowns may be necessary.

• Do not contaminate the external surface of the collection container and/or the accompanying paperwork.

• Minimize direct handling of the specimen in transit. Use plastic biohazard sealable bags with a separate pouch for paperwork.
General Culture Guidelines

• When possible, specimens should be obtained before antimicrobial agents have been administered.
 • If re-culturing, wait 48 hours after stopping of antimicrobials to obtain culture specimens.

• **Use sterile technique in collecting the specimens.**

• When transporting specimens, always tightly cap the specimen containers and ensure tube tops are firmly secured. If specimen spills into the transport bag, the lab will not accept.

• All swabs should be kept moist in a transport medium after the specimen is collected.
General Guidelines – continued

• Collect an adequate amount of specimen.
 • Inadequate amounts of specimen may yield false negative results.
• The specimen must be appropriately labeled with resident information (name and DOB), sample source, and date and time of collection.
 • Identify the specimen source and/or specific site correctly so that proper culture media will be selected during processing in the lab.

• Transport all specimens to the laboratory promptly.
• Contact laboratory prior to collection if any questions or concerns.
Blood Cultures

• **Type of blood culture:** Aerobic and Anaerobic

• **General guidance:** Collect 2 culture sets from separately prepared sites prior to starting antibiotic therapy.

• **Number and timing:** Most cases of bacteremia are detected by using 2 to 3 separately collected blood cultures. A single blood culture may miss intermittent bacteremia and make it difficult to interpret the clinical significance of certain isolated organisms.

• **Volume:** The volume of blood is critical because the concentration of organism in most cases of bacteremia is low. Follow the recommended volume to be drawn based on type of container.

Drawing blood cultures from lines should be avoided.
Blood Culture Collection

- Perform hand hygiene and don gloves.
- Locate a suitable vein before cleansing the skin.
- Using the Chlorhexidine (CHG) pad, apply to skin and using friction and a back-and-forth motion scrub the area for 15 seconds.
- Allow the area to dry for 30 seconds. Do not blow or touch the site after cleansing the skin prior to obtaining blood specimen.
- Disinfect the top of the bottle stopper on the Blood culture bottles with 70% alcohol.
 - DO NOT USE IODINE to disinfect bottles.
- Use a vacutainer butterfly needle with hub to minimize chances of contamination.
Collection Tips:

• Make certain that the needle does not touch anything before entering the skin.
 • If you are unsuccessful in obtaining blood with the first puncture, be certain that you replace the needle and all other collection equipment with new ones before attempting a second puncture.

• Draw the required amount of blood into each bottle filling the aerobic bottle first, followed by the anaerobic bottle.
Gastrointestinal Tract

Fecal specimens

• Have the resident obtain stool specimen.
 • Pass stool into a new clean, dry bedpan or toilet “hat”. Transfer into a sterile, leak proof container with tight-fitting lid.
• Store the stool specimen in refrigerator until transported.
• Do not use toilet paper or diaper to collect stool as it may contain substances which are inhibitory for some fecal pathogens.
• Follow your laboratory’s instruction for transport.
Lower Respiratory

Expectorated sputum

- Have resident rinse mouth and gargle with water prior to sputum collection.

- Instruct the resident to collect specimen resulting from deep coughing in a sterile screw cap container.
 - Specimens consisting of primarily saliva will be rejected.

Induced sputum

- Generally collected by Respiratory Therapist.
Upper Respiratory

• **Nasal**
 - Insert a sterile swab into the nose until resistance is met at the level of the turbinates (approximately 1 inch into the nose).
 - Rotate the swab against the nasal mucosa.
 - Repeat the process on the other side.

• **Throat (pharyngeal specimens)**
 - Depress tongue gently with tongue depressor.
 - Extend sterile swab between the tonsillar pillars and behind the uvula. Avoid touching the cheeks, tongue, uvula or lips.
 - To obtain sample, sweep the swab back and forth across the posterior pharynx, tonsillar areas including any inflamed or ulcerated areas.

Ensure the appropriate type and use of swabs for collection and transport.
Wound Culture

• Background:
 • All wounds are contaminated so a positive culture does not automatically indicate an infection. This must be clinically determined based on wound characteristics, erythema, edema, pain, heat, increased exudate and odor.
 • Proper technique for obtaining a specimen is crucial to avoid false negative or positive results.
 • Culture wound prior to initiation of antibiotics if signs or symptoms of infection are present.
Techniques For Collecting A Wound Culture

- When a wound culture is deemed necessary, what is the best technique for obtaining:
 - Deep-tissue or punch biopsy
 - Needle aspiration
 - Swab culture

Note: Biopsy specimens or aspirates are preferred specimens.
Wound Swab Culture

• Most common technique used because it is practical, noninvasive and cost effective.
 • If done properly, can identify bacterial species of the infection and help guide antibiotic therapy.

• Basic principles:
 • Obtain the culture from properly cleaned and prepared tissue
 • Avoid obtaining only a culture of surface contamination.
 • Obtain a swab culture from a viable wound bed.
 • Ensure the appropriate type and use of swabs for collection and transport.
Indication for Urine Culture

• Urine cultures should be done only when infection is suspected, usually in the presence of resident-reported symptoms.

• Typical urinary infection symptoms include dysuria, frequency and urgency, residents with dementia may present with non-specific signs such as fatigue and mental status changes.

• In residents with urinary catheters, symptoms are more generalized and can include fever, weakness and altered mental status.

• Screening for asymptomatic bacteriuria should only be done in pregnant resident or residents undergoing urologic procedures.
Evaluation for UTI

• When evaluating a resident for potential UTI, the urine culture should be evaluated along with symptoms and the urinalysis.
 • Ten or more leukocytes per microliter in the urinalysis is associated with a diagnosis of UTI but should not be the sole criterion used.

• In the urine culture, the number of colony-forming units (CFU’s) per ml is an estimate of the number of bacteria in the sample.
 • Common bacteria in uncomplicated UTI's include *E.coli*, *Klebsiella* species and *Proteus* species.

• Cultures in residents without urinary catheters are best collected midstream to avoid contamination or straight urinary catheters.
Urine Cultures

General Considerations

• Never collect urine from a bedpan/toilet hat or urinal.

• Thoroughly clean the urethral opening (and vaginal vestibule in females) prior to collection procedures to ensure that the specimen obtained is not contaminated with colonizing microorganisms.

 • Use soap rather than disinfectants for cleaning the urethral area.

 • If disinfectants are introduced into the urine during collection, they can inhibit the growth of microorganisms.

• Specimen should be refrigerated or placed in tube with preservative.

• Use sterile tubes or cups to collect and transport the urine.
Clean Catch Urine Specimen Collection (Female)

• Person obtaining the urine specimen should wash hands with soap and water, rinse and dry. If the resident is collecting the specimen, she should be given detailed instructions.
 • Cleanse the urethral opening and vaginal vestibule area with soapy water or clean gauze pads soaked with liquid soap.
 • Rinse the area well with water or wet gauze pads.
 • Hold the labia apart during voiding.
 • Begin the urine flow, stop the flow.
 • Restart urine flow, collect the midstream portion of during in a sterile container.
 • Stop the urine flow and remove the container.
 • Follow the laboratory instructions for transport.
Clean Catch Specimen Collection (Male)

- Person obtaining the specimen should wash their hands with soap and water, rinse and dry. If the resident is collecting the specimen, he should be given detailed instructions.
 - Cleanse the penis, retract the foreskin (if not circumcised), and wash with soapy water.
 - Rinse the area well with water.
 - Keeping the foreskin retracted, start the urine flow, stop the flow.
 - Restart urine flow, collect the midstream portion of during in a sterile container.
 - Stop the urine flow and remove the container.
 - Follow the laboratory instructions for transport.
Resident with Indwelling Urinary Catheter

Appropriate uses of Urine Cultures

- Presence of symptoms suggestive of urinary tract infection (UTI).
 - Flank pain or costovertebral angle tenderness
 - Acute hematuria
 - New pelvic discomfort
- New onset or worsening sepsis without evidence of another source.
- Fever or altered mental status without evidence of another source.
- In spinal cord injury, increased spasticity, autonomic dysreflexia, sense of unease.

Inappropriate Uses of Urine Cultures

- Odorous, cloudy, or discolored urine **in the absence** of other localizing signs/symptoms.
- Reflex urine cultures based on urinalysis results, such as pyuria, in the absence of other indications.
- Urine culture to document response to therapy unless symptoms fail to resolve.
Should an indwelling catheter be removed or replaced prior to getting a urine culture?

- Determine the number of days the urinary catheter has been in place.
- If greater than 14 days, consider replacing the catheter prior to specimen collection.

Never collect a urine culture from the collection bag.
Steps for Urine Culture Collection from Urinary Catheter

• Perform hand hygiene and don gloves.

• Occlude the catheter tubing a minimum of three inches below the collection port.

• When urine is visible under the sampling port scrub the port with disinfectant wipe.

• Using aseptic technique to collect the specimen using a facility approved collection device.

• If needed, transfer the specimen to facility approved container and label according to policy. Include date and time culture was collected.

• Doff gloves and perform hand hygiene.

• Follow laboratory instructions for transport.
Interpreting a Urinalysis

Dipstick
- Helps identify if patient is hydrated / dehydrated

Marker for common bacterial pathogens *

Marker for white blood cells in the urine

Microscopic Analysis
- White blood cells
- Red blood cells

<table>
<thead>
<tr>
<th>Test Name</th>
<th>Reference Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urinalysis</td>
<td>rflx Microscopic</td>
</tr>
<tr>
<td>Color</td>
<td>YELLOW</td>
</tr>
<tr>
<td>Appearance</td>
<td>CLEAR</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.001-1.035</td>
</tr>
<tr>
<td>pH</td>
<td>5.0-8.0</td>
</tr>
<tr>
<td>Glucose</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>Bilirubin</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>Ketone</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>Occult Blood</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>Protein</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>Nitrite</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>Leukocytes Esterase</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>Urine Microscopic</td>
<td></td>
</tr>
<tr>
<td>WBC</td>
<td><=5 WBC/HPF</td>
</tr>
<tr>
<td>RBC</td>
<td><=2 RBC/HPF</td>
</tr>
<tr>
<td>Squamous Epithelial</td>
<td>NONE SEEN HPF</td>
</tr>
<tr>
<td>Bacteria</td>
<td>NONE SEEN HPF</td>
</tr>
<tr>
<td>Crystals</td>
<td>NONE SEEN HPF</td>
</tr>
<tr>
<td>Triple Phosphate Crystals</td>
<td>NONE SEEN LPF</td>
</tr>
<tr>
<td>Casts</td>
<td>NONE SEEN HPF</td>
</tr>
<tr>
<td>Yeast</td>
<td>NONE SEEN HPF</td>
</tr>
</tbody>
</table>

E Coli, Klebsiella and Proteus produce nitrite from nitrate. Pseudomonas, enterococci and coagulase negative staphylococci do not.
Sample Urinalysis #1

<table>
<thead>
<tr>
<th>Test Name</th>
<th>In Range</th>
<th>Out Of Range</th>
<th>Reference Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urinalysis rflx Microscopic Color</td>
<td>YELLOW</td>
<td>YELLOW</td>
<td>** Please note change in unit of measure and reference range(s). **</td>
</tr>
<tr>
<td>Appearance</td>
<td></td>
<td>CLOUDY</td>
<td>CLEAR</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.019</td>
<td></td>
<td>1.001-1.035</td>
</tr>
<tr>
<td>pH</td>
<td>7.5</td>
<td>3+</td>
<td>5.0-8.0</td>
</tr>
<tr>
<td>Glucose</td>
<td>NEGATIVE</td>
<td></td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>Bilirubin</td>
<td>NEGATIVE</td>
<td></td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>Ketone</td>
<td></td>
<td>TRACE</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>Occult Blood</td>
<td></td>
<td>3+</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>Protein</td>
<td>NEGATIVE</td>
<td></td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>Nitrite</td>
<td>NEGATIVE</td>
<td>1+</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>Leukocyte Esterase</td>
<td>NEGATIVE</td>
<td></td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>Urine Microscopic WBC</td>
<td>>60</td>
<td><=5 WBC/HPF</td>
<td><=5 WBC/HPF</td>
</tr>
<tr>
<td>RBC</td>
<td>0-2</td>
<td><=2 RBC/HPF</td>
<td><=5 RBC/HPF</td>
</tr>
<tr>
<td>Squamous Epithelial Bacteria</td>
<td>NONE SEEN</td>
<td>MANY</td>
<td>NONE SEEN HPF</td>
</tr>
<tr>
<td>Crystals</td>
<td>FEW ABN</td>
<td>FEW</td>
<td>NONE SEEN HPF</td>
</tr>
<tr>
<td>Triple Phosphate Crystals</td>
<td>NONE SEEN</td>
<td></td>
<td>NONE SEEN HPF</td>
</tr>
<tr>
<td>Casts</td>
<td>NONE SEEN</td>
<td></td>
<td>NONE SEEN LPF</td>
</tr>
<tr>
<td>Yeast</td>
<td>NONE SEEN</td>
<td></td>
<td>NONE SEEN HPF</td>
</tr>
</tbody>
</table>
Interpreting a Urine Culture [No Growth]

Order Code: Urine Culture
Site: Urine-Clean Catch
Source: Urine
Instructions:

Receiving Location:
Routing Location:

Culture Observations:
No Growth / Less than 1,000 ORG/mL [Note: Patients with asymptomatic bacteriuria, funguria, or pyuria without UTI symptoms usually do not require treatment with an antimicrobial agent.]
Interpreting a Urine Culture

[PRELIMINARY REPORT]

URINE CULTURE

Approved By: [Redacted]

Test

PRELIM RPT

SOURCE:
I/O CATH

COLONY COUNT
[8/2/2016 6:40 AM TS] >100,000 CFU/mL

RESULT:
Interpreting a Urine Culture

Final Report

STAPHYLOCOCCUS SPECIES (COAGULASE NEGATIVE)

Rifampin and Gentamicin should not be used as single drugs for treatment of Staph infections.

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin</td>
<td>R, >=0.5</td>
</tr>
<tr>
<td>Oxacillin</td>
<td>S, <=0.25</td>
</tr>
<tr>
<td>Cefazolin</td>
<td>S</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>S, <=0.5</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>S, <=0.5</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>S, <=0.12</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>S, <=16</td>
</tr>
<tr>
<td>Trimeth/Sulfa</td>
<td>S, <=10</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>S, <=0.5</td>
</tr>
<tr>
<td>Rifampin</td>
<td>S, <=0.5</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>S, <=1</td>
</tr>
</tbody>
</table>
In Summary

• The proper collection of a specimen is the most important step in the recovery of pathogenic organisms responsible for infections.

• A poorly collected specimen may lead to failure in isolating/detecting the causative organism(s) and/or result in the recovery of contaminating organisms.
 • Inappropriate collection of specimen, may lead to inappropriate treatment such as wrong antimicrobials, unnecessary antimicrobials and in some cases, treatment not being provided when needed.

• Always follow the instructions for collection and transport as provided by lab.

• Always familiarize yourself and your staff about how to interpret the microbiology reports.
Garbage In
Garbage Out
Questions?
<table>
<thead>
<tr>
<th>State Region/Districts</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>North (Rome, Dalton, Gainesville, Athens)</td>
<td>Sue.bunnell@dph.ga.gov (404-967-0582)</td>
</tr>
<tr>
<td>Districts 1-1, 1-2, 2, 10</td>
<td></td>
</tr>
<tr>
<td>Atlanta Metro (Cobb-Douglas, Fulton, Clayton, Lawrenceville, DeKalb, LaGrange)</td>
<td>Teresa.Fox@dph.ga.gov (256-293-9994)</td>
</tr>
<tr>
<td>Districts 3-1, 3-2, 3-3, 3-4, 3-5, 4</td>
<td>Renee.Miller@dph.ga.gov (678-357-4797)</td>
</tr>
<tr>
<td>Central (Dublin, Macon, Augusta, & Columbus)</td>
<td>Theresa.Metro-Lewis@dph.ga.gov (404-967-0589)</td>
</tr>
<tr>
<td>Districts 5-1, 5-2, 6, 7</td>
<td>Karen.Williams13@dph.ga.gov (404-596-1732)</td>
</tr>
<tr>
<td>Southwest (Albany, Valdosta)</td>
<td>Connie.Stanfill1@dph.ga.gov (404-596-1940)</td>
</tr>
<tr>
<td>Districts 8-1, 8-2</td>
<td></td>
</tr>
<tr>
<td>Southeast (Savannah, Waycross)</td>
<td>Lynn.Reynolds@dph.ga.gov (804-514-8756)</td>
</tr>
<tr>
<td>Districts 9-1, 9-2</td>
<td></td>
</tr>
<tr>
<td>Backup/Nights/Weekends</td>
<td>Joanna.Wagner@dph.ga.gov (404-430-6316)</td>
</tr>
</tbody>
</table>
Thank You for Your Time!
Contact the AHS Patient Safety Team

Amy Ward, MS, BSN, RN, CIC
Patient Safety Manager
Amy.Ward@AlliantHealth.org
678.527.3653

Donald Chitanda, MPH, CIC
Technical Advisor, Infection Prevention
Donald.Chitanda@AlliantHealth.org
678.527.3651

Paula St. Hill, MPH, A-IPC
Technical Advisor, Infection Prevention
Paula.StHill@AlliantHealth.org
678.527.3619

Erica Umeakunne, MSN, MPH, APRN, CIC
Infection Prevention Specialist
Erica.Umeakunne@AlliantHealth.org
Alliant Health Solutions Resources

Infection Control Resources

- Sepsis
- Catheter Associated Urinary Tract Infection (CAUTI)
- Hand Hygiene

- Sepsis
 - Sepsis Quick Observation Tool
 - Sepsis Decision Tree
 - Sepsis Provider Engagement

- Catheter Associated Urinary Tract Infection (CAUTI)
 - CAUTI Risk Assessment Tool
 - Urinary Catheter Quick Observation Tool

- Hand Hygiene
 - Handwashing the Frog Way - (Spanish)

- Antibiotic Stewardship
 - Antibiotic Stewardship Basics

NHSN

- Joining the Alliant Health Solutions NHSN Group
- Instructions for Submitting C. difficile Data Into NHSN

COVID-19

- Options for Infection Control Training in Nursing Home Setting

https://quality.allianthealth.org/topic/infection-control/
Save the Date

SNF and Medical Directors Office Hours:
April 21, 2023 - 11 a.m. ET

ALF and PCH
March 24, 2023 - 11 a.m. ET
April 28, 2023 - 11 a.m. ET
Thanks Again...

- Georgia Department of Public Health
- University of Georgia
This material was prepared by Alliant Health Solutions, under contract with the Georgia Department of Public Health as made possible through the American Rescue Plan Act of 2021.